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Artemisinin and its derivatives represent the most important and influential class of drugs in the fight
against malaria. Since the discovery of artemisinin in the early 1970s, the global community has made
great strides in characterizing and understanding this remarkable phytochemical and its unique chemical
and pharmacological properties. Today, even as artemisinin continues to serve as the foundation for
antimalarial therapy, numerous challenges have surfaced in the continued application and development
of this family of drugs. These challenges include the emergence of delayed treatment responses to
artemisinins in malaria and efforts to apply artemisinins for non-malarial indications. Here, we provide
an overview of the story of artemisinin in terms of its past, present, and future. In particular, we comment
on the current understanding of the mechanism of action (MOA) of artemisinins, and emphasize the impor-
tance of relating mechanistic studies to therapeutic outcomes, both in malarial and non-malarial contexts.
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1. Introduction

Malaria has been a debilitating disease with global influence
since ancient times and continues to be one of the most wide-
spread and damaging infectious diseases today [1]. With the cause
of disease having long been misattributed to ‘‘bad air,” the trans-
missible and parasitic nature of malaria remained unknown until
the works of Charles Louis Alphonse Laveran and Ronald Ross in
the late 1800s. Their findings established that protozoa belonging
to the genus Plasmodium caused malaria, and that Anopheles mos-
quitoes were the primary vectors of malarial infections. These
observations made Laveran and Ross two of the earliest recipients
of the Nobel Prize in Physiology or Medicine [2].

In the decades following their discoveries, ground-breaking
progress has been made in the battle against the disease. The cru-
sade launched by the Chinese government in the late 1960s to
search for cures for malaria ultimately culminated in the discovery
of artemisinin. Artemisinin (and its various derivatives, which we
will refer to collectively as ‘‘artemisinin” unless otherwise speci-
fied) is a sesquiterpene lactone compound (Fig. 1) with a unique
chemical structure derived from the sweet wormwood plant,
Artemisia annua L. (Fig. 2). Since its discovery, it has become the
most important and effective antimalarial drug [3].

In many ways, artemisinin is a truly fascinating drug. From the
tumultuous process of its discovery, which was deeply tied to tra-
ditional Chinese medicine (TCM), to its remarkable potency and
impact as an antimalarial drug, it is not surprising that artemisinin
has captured a great deal of attention since its introduction to the
world stage [1]. Over 40 years after its discovery, artemisinin
remains our bulwark against malaria and is the foundation of all
major antimalarial therapies [4]. Years of research spanning a
range of disciplines have gone into the exploration and elucidation
of the mechanisms of artemisinin in its antimalarial role [5].
Beyond that, efforts have been made to repurpose artemisinin for
non-malarial applications, thereby raising considerable anticipa-
tion over the future development of this drug [6].

With that in mind, we feel that it is a good time to broadly
review the timeline of this influential drug, spanning its past,
present, and future. Beginning with a look back at the story of
the discovery and development of artemisinin, we then review
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Fig. 1. Artemisinin and its clinically used derivatives.

Fig. 2. Artemisia annua L. in the field.
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and discuss the contemporary understanding of the mechanism of
action (MOA) of artemisinin in malaria. We conclude by looking
ahead at current efforts to repurpose artemisinin for possible roles
outside of malaria. We believe that this article will provide a well-
rounded background of artemisinin, along with relevant insights
into the salient topics surrounding this remarkable drug.
2. The journey of discovery

We begin with a brief tracing of the remarkable journey that led
to the discovery and development of artemisinin. Records of
malaria in TCM date back thousands of years, and the same is true
for the usage of Artemisia (Qinghao) plants as medicinal herbs. First
mentioned as a specific remedy for malarial symptoms in Ge
Hong’s Zhouhou Beiji Fang (Handbook of Prescriptions for Emergency)
dating back to the Eastern Jin Dynasty (317–420 AD), the
application of Qinghao and other techniques for malarial relief
was subsequently noted in a series of historical Chinese medical
writings that included the influential Bencao Gangmu (Compendium
of Materia Medica) by Li Shizhen (Ming Dynasty, 1368–1644 AD).
This wealth of ancient knowledge would later prove to be
instrumental in the discovery and development of artemisinin.

In the years following World War II, the development and
deployment of the potent insecticide dichloro-diphenyl-trichloro-
ethane (DDT) and new antimalarial drugs such as chloroquine
(CQ) resulted in great progress in combating malaria. However,
the World Health Organization (WHO)’s campaign in the 1950s
to combat and eradicate malaria around the world was eventually
met with challenges related to resistance. The emergence of
DDT-resistant vectors and drug-resistant parasites led to a rebound
of the disease, especially in regions such as Southeast Asia and sub-
Saharan Africa [7]. This setback prompted an urgent need for novel
antimalarial drugs. Significant efforts had been made by the United
States due to the Vietnam War and the prevalence of
drug-resistant malaria in that region. The Chinese government also
initiated efforts in malarial research around this time. In particular,
a national project called Project 523 (named after its date of inau-
guration, 23 May 1967) was set up to consolidate malarial research
on a national level [8].

In 1969, Professor Youyou Tu was selected to lead a research
group within the project that focused on screening TCM for novel
antimalarial drugs. This work took place at the Institute of Chinese
Materia Medica of the China Academy of Chinese Medical Sciences.
Drawing from a massive repository of TCM knowledge that
included ancient literature, folklore, and oral interviews with prac-
titioners, Tu and colleagues worked from a list of over 2000 herbal
remedies, of which some 640 were deemed to be possible ‘‘hits.”
From this selection, over 380 extracts from approximately 200
herbs (including Qinghao/Artemisia extracts) were eventually
collected and tested, mostly giving unsatisfactory results [1,9].
The Qinghao extract nevertheless drew particular interest starting
around 1971, as it produced promising but inconsistent results [1].
This finding prompted a revisitation of the literature, and led to
perhaps the most important breakthrough in the discovery
process.

Returning to the earliest record of the use of Qinghao to treat
malarial symptoms, which was in Ge Hong’s Zhouhou Beiji Fang
(Handbook of Prescriptions for Emergency), Tu noted that the
instructions for the Qinghao prescription involved consuming the
strained ‘‘juice” of the Qinghao plant immersed in water. It was
notable that the instruction made no mention of heating the
medicine—something that was otherwise common for prescrip-
tions in TCM. Drawing from the literature and her own knowledge
of TCM, Tu arrived at the idea to modify the extraction process to
use low-temperature conditions. The extracts produced from this
new procedure were further purified by separation of the acidic
and neutral phases in order to retain active components while
reducing the toxicity of the original extract. The resultant
substance displayed a striking 100% effectiveness against rodent
malaria in experiments carried out around October 1971. This
remarkable result was then fully reproduced in monkey malaria
experiments carried out in late December of the same year, thus
establishing the efficacy of the Qinghao extract beyond doubt [1].
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The breakthrough had been made, but the journey of drug
development was by no means complete. Conditions in China at
that time made it difficult to perform clinical trials of new drug
candidates to ascertain their safety for humans. In an attempt to
accelerate the process due to the seasonal and time-sensitive nat-
ure of malarial research, Tu and colleagues decided to volunteer
themselves as the first human subjects for toxicity and dose-
finding tests [8]. This act established the safety profile of the
Qinghao extract and enabled clinical trials to be carried out imme-
diately, in the latter half of 1972. The trials (which were carried out
in Hainan Province and at the 302 Hospital PLA (now incorporated
into the Fifth Medical Center of the Chinese PLA General Hospital)
in Beijing) proved successful, and paved the way for Qinghao
research to be pushed to the national level. A subsequent concerted
effort on the part of the Chinese scientific community at large
drove further research and development of Qinghao forward. The
active component of the Qinghao extract, artemisinin (also known
as Qinghaosu) itself, was isolated in November 1972 by Tu’s team
at the Institute of Chinese Materia Medica. The teamwould later go
on to develop dihydroartemisinin (DHA), which remains one of the
most pharmacologically relevant derivatives today. In collabora-
tion with other institutes across China, further groundwork in drug
development, including the determination of the stereo-structure
of artemisinin and further derivatization of artemisinin, was
carried out in the following decade [10,11]. These efforts, among
others, culminated in the fourth meeting of the Scientific Working
Group on the Chemotherapy of Malaria held in Beijing in 1981,
where the findings were presented by Tu for the first time. The
results were published in 1982 as a series of papers under the
name ‘‘China Cooperative Research Group on Qinghaosu and Its
Derivatives as Antimalarials” [12,13]; thus the gift from Chinese
medicine was delivered to the rest of the world.

In the subsequent years of the 1980s, artemisinin and its deriva-
tives were successfully employed in China to treat thousands of
malaria patients [1]. As the problem of drug-resistant malaria con-
tinued to worsen elsewhere, it was not long before the commence-
ment of clinical studies with artemisinin in other endemic regions
in Asia [14–19]. Consistent and encouraging results led to the
expansion of such studies, particularly toward Africa [19–24].
The evidence was clear that artemisinin-based therapy, especially
in combination with a slower-acting antimalarial such as meflo-
quine or piperaquine, led to significant improvements in parasite
clearance and a rapid diminishing of symptoms for both uncompli-
cated and severe Plasmodium falciparum malaria infection. At the
same time, its tolerability was shown to be excellent, as reports
of toxicity and safety concerns remained minimal [25]. Across
more than a decade’s worth of independent randomized clinical
studies and meta-analyses, the outstanding efficacy and safety of
artemisinin-based therapy became increasingly clear. Finally, in
2006, the WHO announced an alteration of its strategy to fully
employ artemisinin combination therapies (ACTs) as the first-line
treatment against malaria [26]. ACTs remain the most effective
and recommended antimalarial therapies today [4].

3. The search for a mechanism of action

It has been more than a decade since the implementation of
ACTs as the official first-line treatment for malaria and over three
decades since the discovery of artemisinin. In this time, the clinical
and pharmacological characteristics of artemisinin therapy have
been extensively scrutinized and reported [27–30]. Although the
specifics of various derivatives can differ, artemisinin drugs are
characterized by rapid action and potency, low toxicity, and a short
half-life, which makes combination therapy with longer-acting
antimalarial drugs ideal and recommended [30]. Apart from its
pharmacological properties, elucidating the MOA of a drug is
important for optimizing treatment regimens. Dosages, drug com-
binations, and even considerations of drug resistance are closely
related to the molecular basis of a drug’s activity. It is thus some-
what surprising that despite decades of widespread application,
our understanding of the MOA of artemisinin remains fairly incom-
plete. Here, we provide a brief overview of the prevailing under-
standing as well as more recent developments in mechanistic
studies of artemisinin [31,32]. In general, the outstanding thera-
peutic properties of artemisinin can be thought of as a result of
two major processes: its unique mechanism of activation, and its
downstream activity and drug targets. These mechanisms combine
to yield a highly potent, yet highly specific, drug.

3.1. Drug activation

Artemisinin and its derivatives are sesquiterpene lactones that
bear the 1,2,4-trioxane moiety as the pharmacophore [33]. In
particular, the endoperoxide bridge within this group is well
understood to be essential for the pharmacological activity of
artemisinin [13,34,35]. Artemisinins are prodrugs in two senses:
first, many derivatives are rapidly converted to DHA in vivo, and
second, their MOA depends on activation by cleavage of the
endoperoxide bridge. The mechanism of this cleavage remains an
issue in active research [36]. Malarial parasites are characterized
by extensive hemoglobin uptake and digestion during the
erythrocytic stage of their life cycle [37,38]. This releases copious
amounts of free redox-active heme and free ferrous iron (Fe2+),
which are thought to underlie the parasite specificity of artemisi-
nin. Indeed, hemoglobin digestion has been strongly linked with
artemisinin susceptibility in parasites [38,39]. Multiple models have
been proposed with regard to the mechanism of endoperoxide
cleavage by either free redox-active heme or free ferrous iron,
and the downstream molecular events that follow cleavage
[36,40–48]. These proposals differ in terms of the nature of the
cleavage and the identity of the reactive intermediates produced
by drug activation. In general terms, however, they explain the
parasite-specific drug activation through which reactive species
are produced, leading to cellular damage and parasite killing.
Recent evidence suggests that free redox-active heme may play a
predominant role in drug activation [49,50]. A 2008 study provided
in vitro data that indicated that ferrous heme may be a stronger
activator of artemisinin than other iron-containing species, includ-
ing hemin, free ferrous iron, and undigested hemoglobin [49].
Similar observations were made in live parasites, in which
artemisinin activation was blocked by inhibiting hemoglobin
digestion but not by the chelation of free ferrous iron [47]. Thus,
the process of hemoglobin digestion in infected erythrocytes,
which is required for parasite growth, is the key to the specificity
of artemisinin activation [38].

Interestingly, in studies using yeast cells as a proxy for malaria
parasites [51,52], it was found that mitochondria were directly
involved in both the activation and action of artemisinin, thus fur-
ther linking artemisinin action to reactive oxidative species (ROS)
production and oxidative damage. It is also plausible that multiple
redundant activation pathways may exist in different environ-
ments or localities, where the conditions and magnitude of activa-
tion can differ [53]. Looking ahead, it will be crucial to consider the
pivotal role of drug activation in the activity of artemisinin and to
further elucidate its mechanisms under different conditions.

3.2. Downstream mechanism

The crucial step in elucidating a drug’s MOA is to identify its cel-
lular targets. In the conventional understanding of drug design and
mechanisms, a drug modifies one or more specific cellular targets,
such as proteins, in order to effect downstream changes. However,
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the exceedingly fast-acting and potent nature of artemisinin activ-
ity, taken together with its ability to alkylate targets, may be due to
quite a different mechanism.

First of all, heme releases from hemoglobin digestion functions
that lie beyond drug activation, as previously outlined. Excess heme
is converted in infected erythrocytes to hematin, which is toxic to
the parasite via oxidative damage and direct lysis of cellmembranes
[54]. Malarial parasites have therefore evolved a detoxifying mech-
anism that converts hematin to the nontoxic and inert crystallized
hemozoin via a biocrystallization process [55]. Activated artemisi-
nin has been reported to prevent the formation of hemozoin by
alkylating heme; therefore, it functions in a similar capacity to other
antimalarial drugs that act on hemozoin formation, such as CQ
[45,56–58]. Thus, free heme from hemoglobin digestion serves as
both the activator and the target of artemisinin [45].

Given that activated artemisinin is thought to generate ROS, it is
unsurprising that artemisinin has also been reported to directly
alkylate protein targets [59,60]. The translationally controlled
tumor protein (TCTP) and the Plasmodium sarco/endoplasmic retic-
ulum Ca2+-ATPase PfATP6 were among the first targets of interest
that were identified as interacting partners of artemisinin
[61–63]. Consideration of the role of single targets in the activity
of artemisinin has now evolved into MOAs that may depend on
multiple targets, as later studies have shown [64–67]. Using
unbiased proteomics methods, it has been observed that artemisinin
targeting may be promiscuous rather than monotarget-specific. In
the first study that systematically reported artemisinin binding
targets, over 100 proteins were identified in live parasite strains
[47]. An independent study carried out by Ismail et al. [68] led to
consistent findings. These results support a promiscuous mecha-
nism of artemisinin targeting in which activated artemisinin
alkylates and damages many cellular proteins, thereby disrupting
multiple key biological functions and resulting in toxicity and
lethality in parasites [47,48,50]. Interestingly, PfATP6 and other
key transporters such as PfCRT and Pfmdr1 are consistently labeled
in these types of experiments. These findings are consistent with
PfATP6 being an important target for artemisinins [47,68]. As an
independent line of evidence, the mapped binding sites of artemi-
sinin to TCTP further support a heme-activated promiscuous
mechanism in which modification sites are proximity-based and
essentially random [50].

Our current knowledge of artemisinin paints a picture of a drug
with a unique and elegant mechanism. Artemisinin and its deriva-
tives are prodrugs that absolutely require endoperoxide group
cleavage for drug activation and subsequent anti-parasite activity.
Artemisinin activation is dependent on a heme-rich environment,
which is specific to infected erythrocytes as well as being an
unavoidable outcome of parasite metabolism. The heme-rich envi-
ronment itself is then exploited by the activated drug to achieve
efficient parasite killing. This mechanism essentially links infection
and parasite growth to drug activation, thus ensuring both the out-
standing specificity and the tolerability of artemisinin therapy. At
the same time, activated artemisinin indiscriminately damages
proximal proteins and cellular structures. Rather than targeting a
single protein or cellular function, like the majority of conventional
drugs (including most antimalarials), artemisinin acts like a less-
discriminative ‘‘bomb” that detonates upon activation to cause
widespread damage. The specificity of artemisinin may therefore
be seen to be based on its activation rather than on its targets.
These unique properties of artemisinin make it almost the ideal
weapon against malaria, especially in combination with other
drugs that act via distinct mechanisms and complement the
pharmacological profile of artemisinin. An obvious advantage of a
promiscuously targeting drug is also worth noting here: The devel-
opment of drug resistance is muchmore difficult when mutation in
one or a few specific targets is not sufficient to seriously impact
drug activity. This advantage could well explain why artemisinin
has remained generally efficacious despite its ubiquitous use over
decades.

Nevertheless, recent trends have signaled the incidence and rise
of malaria that is being cleared more slowly by ACTs, especially in
the Asian endemic regions [69]. This topic has been comprehen-
sively covered from various angles by recent reviews and commen-
taries [69–75]. Regardless of the controversies about the exact
definition of ‘‘artemisinin resistance” in the field, the threat is
undoubtedly real, given the place that artemisinin occupies in
the control of malaria [76,77]. To resolve this burning issue, two
major challenges must be overcome: ① A full understanding of
the MOA of artemisinin must be achieved; and ② the genetic
and physiological features of the newly emerged artemisinin-
resistant strains must be defined. Even though the MOA of
artemisinin has been largely demystified in the past few years,
the molecular characterization of artemisinin-resistant malaria is
far from clear. Continued efforts are required to achieve a complete
picture of how artemisinin resistance relates to its mode of action.
Based on this new knowledge, new therapeutic strategies can then
be developed and tested.

4. Repurposing artemisinin

Artemisinin therapy is characterized by its outstanding tolera-
bility and relative affordability. This combination of proven safety
and accessibility make artemisinin a drug of exceptional interest
for repurposing studies. Indeed, interest in non-malarial
applications of artemisinin has increased steadily over time since
artemisinin was first made known to the world [78]. While malaria
remains the only disease for which artemisinin is an approved
treatment, the potential applications of artemisinin in anti-
cancer, anti-inflammatory, anti-parasitic (outside of malaria) and
anti-viral roles, among others, have been explored in earnest over
the years [78–82]. Here, we briefly comment on some promising
research in artemisinin repurposing, especially in the field of
cancer treatment, as a window into future drug development.

The efficacy of artemisinin in cancer cultures was first reported
in 1993, and has since been expanded on and extensively charac-
terized [83–85]. It is now well-reported that artemisinin and its
derivatives display selective cytotoxicity against a range of cancer
types in both in vitro and in vivo studies [86]. Forays into clinical
testing have been generally promising, if limited in number and
scale [87–89]. More than two decades of research on the basis of
artemisinin action in cancer has uncovered a plethora of impli-
cated targets and mechanisms. Artemisinin has been reported to
induce mitochondrial apoptosis and other forms of cell death such
as necroptosis, inhibit cancer angiogenesis and metastasis, and
arrest the cancer cell cycle [90–97]. These outcomes are reportedly
mediated by a combination of oxidative damage, DNA damage,
alteration of gene expression, and interactions with a wide array
of signaling pathways including mammalian target of rapamycin
(mTOR), NF-jB, mitogen-activated protein (MAP) kinases, and
Wnt/b-catenin, among many others [82,98–102]. These pathways
and mechanisms have been extensively reviewed in recent
publications [79–82].

While pathway validation is an important aspect of mechanistic
study, it is also necessary to consider the big picture in terms of
unifying drug activation and downstream activity in a manner
similar to what was done in malaria studies. As is the case with
malarial parasites, the activation mechanism of artemisinin in can-
cer cells is likely to be heavily linked to its specificity of action.
Thus, the role of free ferrous iron versus free redox-active heme
is once again being put under scrutiny, especially considering that
iron is intimately linked to artemisinin-induced cytotoxicity in
cancer [103,104]. Recent studies have once again shed light on
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the role of heme in artemisinin activation in cancer cells, thereby
drawing parallels with the case in malaria. In particular, a range
of methodologies have been used to demonstrate that modulation
of heme synthesis and availability clearly correlates with cytotox-
icity [105–108]. It is also important to note that cancer cells have
been reported to possess enhanced levels of heme metabolism
and synthesis, and that this could underpin the cancer specificity
of artemisinin in a similar manner to the case in malaria [109–
111]. Specific targeting of artemisinin to mitochondria (the site
of mammalian cell heme synthesis) or enhancement of heme levels
by treatment with the heme precursor aminolevulinic acid (ALA)
both improved anti-cancer activity [112–114]. A heme-centric
mechanism of activation and an iron-dependent mechanism of
downstream cytotoxicity could possibly be a point of reconciliation
between the roles of those two species in the anti-cancer activity of
artemisinin [115]. Further work to fully understand the basis of
artemisinin specificity in cancer will be critical for future therapeu-
tic applications.

At the same time, it is necessary to consider the appropriate
direction when moving forward in terms of validating artemisinin
MOAs in cancer. Consider the case in malaria, where artemisinin is
proposed to indiscriminately attack adjacent targets upon activa-
tion. If artemisinin is activated in a similar manner in cancer cells,
it is plausible that the same promiscuous multi-target mechanism
would take place. This would explain the remarkable range of cel-
lular effects and implicated pathways that have already been
reported, as multiple targets and functional pathways are likely
to be simultaneously affected by such a mechanism. Indeed, recent
unbiased studies of artemisinin cancer targets using proteomics
approaches have revealed a similar multi-target MOA by artemisi-
nin in cancer cells [48,113,114]. The mechanism of cytotoxicity
itself is also a matter of great interest, especially with regard to
non-apoptotic forms of cell death. Recent work has closely linked
artemisinin-induced cytotoxicity to oxidative damage and lysoso-
mal function, with a focus on the role of iron in contributing to
the iron-dependent form of cell death known as ferroptosis
[116–118]. In particular, lysosome-mediated degradation of fer-
ritin under autophagy conditions (termed ferritinophagy) releases
free ferrous iron, which in turn contributes to both ferroptosis and
iron-mediated generation of ROS [93,119]. Autophagy itself is a
cellular process that is reportedly activated by artemisinin, but
has ambiguous effects on cancer cell survival and the cytotoxicity
of artemisinin [115,119]. It is clear that the relationship between
autophagy, lysosomal activity, free ferrous iron, and iron-
dependent ferroptotic cell death following artemisinin exposure
represents a major area of uncertainty in the anti-cancer mecha-
nism of artemisinin. However, efforts in unveiling novel, cancer-
specific targets and mechanisms are steadily ongoing and continue
to contribute to a grand view of artemisinin as an anti-cancer drug.
Artemisinin-mediated effects on cancer stem cells, immunomodu-
lation, cancer metastasis, cancer metabolism including the regula-
tion of glycolysis, and a plethora of signaling pathways including
signal transducer and activator of transcription 3 (STAT3), NF-jB,
mTOR, and CREBP signaling are among recent reports, and indicate
novel directions for further validation [115,120,121]. In particular,
the potential ability of artemisinin to serve as an immunomodula-
tor in cancer by regulating regulatory T cell (Treg) activity and the
production of pro-cancer-survival immunosuppressive cytokines
such as prostaglandin E2 (PGE2) is noteworthy, given the complex
role of immunomodulatory drugs in cancer therapy [122–125].
Finally, efforts to improve the formulation and delivery of
artemisinin-based drugs have shown promise in delivering
enhanced efficacy and reduced susceptibility to drug resistance.
These results include novel synthetic dimers, trimers, and drug
conjugates (especially transferrin-conjugated systems), in addition
to combination therapies; they represent an exciting ongoing area
of research that has been reviewed comprehensively in recent
publications [126–135].

In addition to the possible applications of artemisinin in cancer
treatment, active research is taking place on its potential roles in
addressing a range of other diseases. In particular, anti-
inflammatory effects against autoimmune diseases and allergic
asthma, among other conditions, have been reported in a range of
disease models [78]. Some of these results correlate with observa-
tions of immunosuppression in patients undergoing artemisinin
therapy for malaria [136]. Strong anti-viral effects of artemisinin
have also been reported in herpes and in hepatitis B and C viruses,
and other parasitic diseases including schistosomiasis have also
been shown to respond to artemisinin treatment [137–141]. Recent
findings have even identified a remarkable—if controversial—role of
artemisinin in diabetes through inducing transdifferentiation of
pancreatic a cells to generate b cells [142,143]. The MOA for these
alternative applications is frequently discussed in terms of the
canonical model of ROS generation and oxidative damage induction
upon endoperoxide cleavage; however, non-canonical (including
endoperoxide-independent) mechanisms have also been proposed,
especially in the case of immunomodulation [78,144]. It will be
essential to pursue a clear view of how drug mechanisms and func-
tions may differ under varying applications and conditions, while
considering the importance of the conditions of drug activation. It
is alsoworth noting that repurposing researchmight be best carried
out in patients and regions that are not burdened with or at risk of
malaria, in order to avoid possible interference or complications.
Every care must be taken to ensure that the full potential of
artemisinin can be realized without compromising its current
applications.
5. Conclusion

The artemisinins are a class of remarkable drugs that have rede-
fined the landscape of antimalarial therapy. A combination of out-
standing potency, safety, and accessibility has put artemisinin at
the forefront of the ongoing battle against the malaria scourge,
where it has already impacted millions of lives. Since its discovery,
a concerted effort by the global community has assembled a pic-
ture of a drug with a unique set of properties that makes it almost
the ideal antimalarial drug. Active research in other fields has also
revealed a broad spectrum of promising applications for artemisi-
nin outside of malaria. We believe that it is only logical to seek to
maximize the utility of this drug in a range of capacities. In the
context of malaria, doing so means to continue to clarify the mech-
anisms of activation and action of artemisinin, while working to
further improve its pharmacological properties both alone and in
combination [145]. Combined with a firm grasp of the principles
of artemisinin activity, this could be the key to clearing the uncer-
tainties of artemisinin resistance. Such efforts would ensure that
the drug can continue to perform in a similar or even greater
capacity within the role that it has served for so long. Looking
ahead, repurposing studies driven by a robust understanding of
differential MOAs in different diseases and systems will also be
instrumental in defining the future of artemisinin. Ultimately, it
is our sincere hope that this gift from Chinese medicine can con-
tinue to serve the pursuit of health for people all around the world,
for many years to come.
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